
Int. J. Solids Structures. 1967. Vol. 3, pp. 427 to 443. Pergamon Press Ltd. Printed in Great Britain

OPTIMAL PLASTIC DESIGN OF CIRCULAR PLATES

P. V. MARCAL

Imperial College of Science and Technology, London

Abstract-The method of optimal plastic design by an associated non-linearly elastic structure is used to find the
minimum cost of circular plates with rotationally symmetric conditions of loading and support. A study is made
of the built-in plate and an example is given where a minimum thickness of the plate is specified.

1. INTRODUCTION

THE optimal design of circular plates subjected to rotationally symmetric conditions of
loading and support has been a subject of considerable interest in recent years. Hopkins
and Prager [I] and Freiberger and Tekinalp [2] have investigated the case of a plate with
uniformly distributed pressure and simply supported edge conditions.

Onat et al. [3] by applying the direct design procedure developed by Drucker and
Shield [4] have investigated the case of a plate with arbitrarily distributed pressure and
with both built-in and simply supported edge conditions.

In order to simplify the analysis, the design objective has usually been restricted to the
minimization of the weight of the structure, the implicit assumption often being that the
overall cost is some function of the amount of material used.

Although it relates to shells of constant thickness, it may be of interest to note here
that Raymond and Osbeldiston [5] in arguing for the use of higher stresses in pressure vessel
design have given some idea of the relation between weight and economic cost in the pres­
sure vessel field. We quote "For a group oftypical process vessels for chemical plant which
were designed in I.e.I. to the German stress levels, the savings in both direct cost and
weight are estimated to have been about 20 per cent. The savings to users of vessels extend
beyond those on the direct costs, because the smaller weights reduce also the cost offounda­
tions, supports and erection, and sometimes of cranes". It will be noticed that, even in this
particular example, the overall savings to the user does not vary as a linear function of
weight.

Another restriction found in the optimal design methods to date is the inability to
impose minimum sections. Frequently a minimum section must be specified in the struc­
ture in order to carry the shear loads and in some cases to avoid buckling as well.

A general method of optimal design by means of an associated structure has recently
been developed by Marcal and Prager [6]. It has the minimum cost of the structure as its
design objective, the unit cost being a convex function of the plastic resistance. This design
objective is more general than that of minimum weight and can include the latter as a
particular case. Design is effected by means of an associated non-linearly elastic structure.
This is supported and loaded in the same manner as the plastic structure that is to be
designed, and the minimum of its complementary energy is made to correspond to the
minimum of the cost of the plastic structure.
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Statement ofobject

The object of the present paper is
(a) to develop, in greater detail, the application of the method of [6] to symmetrically

loaded circular plates which obey the Tresca yield criterion;
(b) to study the case of a built-in plate subjected to uniformly distributed pressure; and
(c) to extend the method so as to allow for the inclusion of a minimum section, i.e. a

minimum plastic resistance in the specific cost function of the design.

2. OPTIMAL PLASTIC DESIGN AND THE ASSOCIATED PLATE

In the present section, the method of optimal design developed in [6] is outlined in the
form appropriate for a symmetrically loaded circular plate in order to make the present
paper reasonably self-contained.

In the following, we use polar co-ordinates r, (J and take the centre of the plate as
origin. The plate radius will be denoted by R.

Let <jJ(Mp) be the "cost" per unit area of building a plate that will support the fully
plastic moment Mp' i.e. the bending moment, for cylindrical bending. <jJ(Mp) will be called
the specific cost function; its graph will be assumed to be convex with respect to the
Mp-axis.

The total cost C1> of the design is then given by

C1> = 2nS: <jJ(Mp)r dr. (2.1)

The object of an optimal design is to find, among all the designs capable of carrying the
given loads, that design which also minimizes the total cost.

We begin by considering another plate for the same conditions ofloading and support.
The specific complementary energy c of this plate is taken to be equal to the specific cost
function <jJ(Mp) of the original plate. This plate will be called the associated plate.

For the associated plate, the specific complementary energy is given by

(2.2)

where M" Me and k" ke are the radial and circumferential bending moments and curva­
tures of the plate.

Since
_ _fMY d<jJ aMp fMe d<jJ aMp

c(Mp) - <jJ(Mp) - dM aM dMr + dM aM dMe
o pro p e

by (2.2), we have

(2.3)

(2.4)

wherever the partial derivatives aMp/aMr and oMp/oMe exist.
Solving the problem of the associated plate with the aid of (2.4), we obtain the strain

field = [kr(r), ke(r)] and the stress field M* = [M,(r), Me(r)).
With the above in mind, we return to the original plate and consider a design based

on the statically admissible stress field M*. Because of the definition of the associated plate,
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the field k* can now be interpreted as a kinematically admissible strain rate field. The
common factor dc/>/dMp in the two equations (2.4) represents the rate of increase of the
specific cost with the plastic moment and is therefore positive, so that the strain rate field
k* is compatible with the stress field M* in the sense of satisfying the normality flow rule
of plasticity. Hence, by the uniqueness theorem of limit analysis, the design of the plate
with the stress field M* is at the plastic limit.

It will be shown that this design also minimizes the cost <D.
For, by (2.2)

<I> = 2n J: c/>(M*)r dr

= 2n fR c(M*)r dr
'0

(2.5)

equals the complementary energy of the associated plate. But M* is the stress field obtained
from a solution of the associated plate so that the complementary energy and hence the
cost <I> is a minimum. (Note that to establish the minimum character ofthe complementary
energy, rather than merely its extremum character, we need the convexity of the specific
complementary energy. This is the motivation for assuming the specific cost c/>(Mp ) to be
a convex function of M p.)

The design of the original structure with.the stress field M* is, therefore, an optimal one
and the method of optimal design by an associated plate has been established.

3. DESCRIPTION OF PLATE

We consider a plate obeying Tresca's yield condition

(3.1 )

and deforming in accordance with the generalized flow rule.
In the present paper, attention is restricted to a built-in circular plate loaded over its

whole surface by a uniformly distributed pressure of intensity p. The equilibrium equation
of this symmetrically loaded plate is

(3.2)

where the prime denotes differentiation with respect to r.
The specific cost function c/>(Mp) of the plate is assumed to be made up of two linear

portions with slopes tX t and tX 1 + tX 2 as shown in Fig. 1. The two lines meet at Mp = Y. In
order that this function be convex to the Mp axis, (X2 ~ O. For convenience of discussion
the fully plastic moment M p has been defined as positive in (3.1). Strictly speaking M p

takes on a negative value when the moments are in the lower half of the Tresca hexagon
(Fig. 3(a)) and, in order to show that the specific complementary energy and the specific
cost function is always positive, the fully plastic moment M p is allowed to appear as
negative in Figs. 1 and 2.
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Note on specific cost functions
In [6] where a beam was considered, it was shown that the only restriction on the specific

complementary energy of an associated structure was that the curve of the specific comple­
mentary energy versus the bending moment remained convex to the moment axis. This
curve of the specific complementary energy was permitted to be piecewise differentiable.
By the definition of the associated structure, this also held for the specific cost function of
the original beam and hence permitting the use of piecewise linear specific cost functions.

By making the reasoning in [6] more general, it can be shown that the only restriction
on the specific cost function of a plate is that its curve of specific cost function versus the
plastic moment M p remains convex to the plastic moment axis.
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4. STRESS REGIMES FOR THE ASSOCIATED PLATE
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This section considers the stress regimes on the hexagon representing the Tresca yield
condition (Fig. 3(a)) in order to find the regimes which allow deformation of the associated
plate without violating the geometric conditions of compatibility. The relations of com­
patibility are implicit in

k r = _u",
u

r
(4.1)

(4.2)

where u is the deflection of the horizontal plate and is taken to be positive when acting in
a downwards direction.

The specific cost function in Fig. 1 has slopes del>/dM p which are shown plotted against
the plastic moment in Fig. 2. When the plastic moment has the value Y, the derivative
del>/dMp is considered as taking any value between ct t and ct t +ct2 (see [61 for a continuity
argument justifying this convention).

Assuming that the pressure on the horizontal plate only acts in the downward direction,
we need only consider the stress regimes in the top half of the hexagon in Fig. 3(a). The
curvatures of the deformed plate that can be caused by the bending moments on the
hexagon of Fig. 3(a) are shown in Fig. 3(b).

Figure 3(b) is obtained in the following manner.
For the regime AF, M r = M p , Mo = 0 and by (2.4)

del>
k r = -d-· 1,Mp

(4.2) is represented by af on Fig. 3(b).
For the regime A, we proceed in a manner which is analogous to that used in obtaining

the strain rates by the generalized flow rule of plasticity.
At A the intersection of the two regimes M r = M p and Mo = M p •

and by (2.4)

(4.3)

k = del> (1-..1.)
o dM

p

(4.4)

where 1 ~ A~ O.

The curvatures that can be caused by moments in regime A are shown by the line
marked A in Fig. 3(b).

Similarly Fig. 3(b) can be completed by considering the other regimes in turn.
On account of the compatibility condition (4.1), not all of the stress regimes allow

deformation of the associated plate. Each stress regime must now be examined in turn to
see which regimes allow deformation over an annular region of finite width.

The analysis is first carried out for a constant value of del>/dM p • Let del>/dM p = ct.

Stress regime AF

ko =
u'

-- = 0 (4.5)
r

k = _u" = ct. (4.6)r
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Integrating (4.6) and dividing by r
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u' a l-- = tX+-.
r r

(4.7)

The subscripted a is a constant of integration.
(4.5) and (4.7) are not compatible for variable r.
Regime AF does not allow deformation of the associated plate.
Regime A

" u'kr+ke = -u -- = IX
r

solving (4.8)

(4.8)

(4.9)

(4.10)

(4.11)

Regime A allows deformation of the associated plate.
Regime AB

u'
ke = -- = IX

r

kr = _u" = O.

Integrating (4.13) and dividing by r

(4.12)

(4.13)

(4.14)

(4.12) and (4.14) are not compatible for variable r.
Regime AB does not allow deformation of the associated plate.

Similarly, it can be shown that regimes Band BC do not allow deformation of the
associated plate, while regime C can be shown to allow deformation according to

u' as-- = -IX-- 2 O.
r r

(4.15)

We consider next the case when the plastic moment M p is equal to Y and where
dcP/dM p can take any value between IXI and IX2' The work is shortened considerably by
noting that with a constant plastic moment M p' regimes AB and BC are the only regimes
which can satisfy a changing radial moment M r as demanded by the equations of equilib­
rium (3.4).
For regime AB with variable dcP/dM p'

u'

r

kr = _u" = 0

(4.16)

(4.17)
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solving (4.16) and (4.17)

and

Regime AB allows a deformation of the associated plate.
Similarly, it can be shown that for regime Be with a variable dcPldM fl'

u' Q,

ke = -- = 2'r r

5. STRESS RELATIONS FOR THE ASSOCIATED PLATE
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(4.18)

(4.19)

(4.20)

In this section we integrate the equations of equilibrium (3.4) for the stress regimes
which can support movement of the associated plate.
Regime A

Mr=M//=M p

(rM1,)' - M p = pr2

pr2

M, = M p = -4+C1

the subscripted C is a constant of integration.
Regime AB

Mo=M p = Y

pr2

(rM,Y - Y = -2

Similarly,for regime BC, M p = Y

Mn-M, = Y

pr2

M, "'" Ylogr- 4 +C3

and for regime C

(5.1 )

(S.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Mo=O (5.9)

(5.10)



434 P. V. MARCAL

6. ANALYSIS OF A BUILT-IN PLATE

The equations obtained in the previous two sections can now be used for the analysis
of the associated plate. A deformation pattern which is consistent with the boundary
equations is first sketched. This deformation pattern will in general comprise several
regions, the moments in each region being chosen to act at one of the stress regimes which
have been found to allow deformation of the associated plate. The choice of the appro­
priate regime depends on the shape of the deformation pattern. In the following, we
illustrate and amplify the method by considering the case of a built-in horizontal plate
which is subjected to a uniformly distributed pressure. The pressure is assumed to act in
a downward direction.

Initially, with a sufficiently low pressure, the plate can be designed using only the first
portion of the specific cost function with slope IX I' The deformation of the plate takes the
form shown in Fig. 4(a). The curvature of the deformed plate changes sign at some radius
r = p. The circle r = p divides the plate into two regions.

For region 1

R?r?p

u" is positive, u' is negative which means that kr is negative and klJ is positive (4.1). The
regime which will allow this deformation is the regime C.

Similarly for region 2
p?r?O

kr is positive and klJ is negative and the moment is in regime A.
Having chosen the regimes for the regions 1and 2, we are now in a position to consider

the deformation of the plate in detail:
for region 1, by (4.15) and the boundary condition u' = 0 at r = R

u' = IX1(r R) (6.1)

for region 2, by (4.10) and the boundary condition u' = 0 at r = 0

(6.2)

At r = p, because of the continuity of slopes, we have

IXI(p-R) = !IXIP (6.3)

p = jR. (6.4)

The values that the curvatures take for each region of the plate are shown on the kr vs. klJ
plane in Fig. 4(b).

FIG.4(a) FIG.4(b)

• k"..
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As we move along the radius of the plate, the path which these values take on the
diagram can be followed in broad outline. Starting from the origin 0 and moving out­
wards, the curvatures first remain constant at the point marked region 2 until the radius p
is reached. At the radius there is a discontinuous jump in the curvature k r while the
curvature ko remains constant because of the requirement of continuity of slopes. Both
the points with constant ko are marked p in Fig. 4(b). Moving beyond the radius p, the
curvature ko decreases until it becomes equal to zero at the radius R in accordance with
the boundary condition of vanishing slope. Because this region is in regime C, the
curvature kr has a constant value of - Gtt. We call a path, such as the one described above, a
curvature path.

Next, we consider the bending moments in the plate. For region 1, by (5.10) and the
condition Mr = 0 at r = p we have

Substitute for p from (6.4)

p r3 -(8j27)R 3

M p = -Mr = 6 r

for region 2, by (5.3) and the condition M r = 0 at r = p we have

(6.5)

(6.6)

(6.7)

Because our specific cost function is linear it can be interpreted as the specific weight of
a sandwich plate so that, in the above, we have achieved the minimum weight design of a
sandwich plate.

(6.4), (6.6) and (6.7) are the well known equations for the minimum weight design of a
built-in sandwich plate obeying the Tresca yield criterion. (See for instance [3 ].)

As the pressure is increased a stage is reached when the plastic moment at radius R
becomes equal to Y. The design for higher pressures using only the initial portion of the
specific cost curve is no longer possible and the design with the above combination of
regimes is no longer optimal. Both portions of the specific cost curve with slopes Gt t and
Gt t + Gt l must now be used.

c

FIG.5(a)

1"91t~~----L. -+ '_">';-__k
'1"

FIG.5(b)
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In order to achieve a smooth transition from the deformation pattern of the previous
example, we take Fig. 5(a) as the next deformation pattern of the associated plate. There
are now three regions and we denote the radii of their interfaces by p and X respectively.

Using a similar analysis to the above, by inserting the geometric boundary conditions
and equating slopes at r = X, we have

and by static considerations we have for regions 1 and 2

prz pp3 Yp
M r = 6+&---;:- = -Mp

( 6Y)'X = P 1-~"'
ppz

(6.9) holds for regions 1 and 2 because the moments in both regions are at regime C.
For region 3, we have

(6.8)

(6.9)

(6.10)

(6.11)M r = ~(xZ-rZ) = M p

This deformation pattern results in an optimal design providing the plastic moment
at the centre of the plate does not exceed the value Y; by (6.11) we have

(6.12)

With increase in pressure, the equality in (6.12) is soon reached. This can be seen from
(6.6) and (6.7) of the previous deformation pattern which give

19 pR z

18 9 at r = R

and

(6.13)

Hence we see that this deformation pattern is of little practical interest, its only use is
that it provides a link with the next deformation pattern which we now consider.

The deformation pattern is shown in Fig. 6(a) and the curvature path is traced in
Fig. 6(b). There is now a new form of restriction on the validity ofthis deformation pattern
(this was also found in [5J). This can best be appreciated by referring to Fig. 6(b). The
curvature kr at r = ~ changes discontinuously while the curvature koremains constant. At
r = ~ and with (IXI +lXz)/2 > lXI' i.e. IXz > IX I the horizontal line from the point 2 on the
outer hexagon of Fig. 6(b) can no longer meet the inner hexagon.

For the present we assume that IXz ::;; IXI and proceeding as above, we have

(6.14)
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for regions 1 and 2,

M=
pr2 pp3 Yp

(6.15)--+~--= -M,r 6 6r r P

( 6yr (6.16)X = P 1-- ,
pp2

and for regions 3 and 4,

M = M = E(x2_r2) (6.17)
r p 4 '

X (4; +~2r. (6.18)
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We now turn to the case when 0(2 > OCt and in order to join up the outer hexagon with
the inner hexagon of Fig. 7(b) we have the deformation pattern shown in Fig. 7(a). A new
region with moments in regime AD and constant plastic moment Y now appears. Again,
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by matching equations at the ends of the regions, we have

for regions 1 and 2,

for region 3

for region 4

pr2 PX 3

M r = --+- = -Mp ,
6 6r

(
6 y)t

X = P 1-­pp2

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

and for region 5,

(6.24)

(6.25)

(6.26)

Region 3 of this deformation pattern decreases with increase of pressure. When region 3
becomes equal to zero we have the next and last deformation pattern shown in Fig. 8(a).

3

"B

~--------

FIG.8(a) FIG.8(b)
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Proceeding as above, we have

(6.27)

for regions 1 and 2,

(6.28)

(6.29)

for region 3, with M p = Y

(6.30)

( 6Y)±
1'/ = X 1-­

PX2 (6.31)

and for region 4,

(6.32)M r = Y +~(rr2-r2).

The above equations were solved on a digital computer and the results are shown in
Figs. 9 and 10. The r/R vs. pR 2/y plot of Fig. 9 is for the case where az > at. It shows the
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variation in the size of the regions as the pressure is increased. The full and dashed lines
show the results for the deformation pattern of Fig. 7(a). When two ofthe middle lines meet
we have the deformation pattern of Fig. 8(a) and the results are shown by the broken lines.

Figure 10 shows the effect on the cost of increase in pressure for different ratios of 1X2

to IX 1.

Previously, optimal design of plates with a specified minimum section has not been
possible. A design with a minimum cross section to carry the shear loads is obviously more
realistic. As a final example of the present method, we consider the optimal design of a
built-in plate with a specified minimum cross-section. The specific cost function for this
case is obtained by letting IXI = 0 in Fig. 1. The cost of the minimum section is passive and
does not enter into the analysis so that it can be added on after the analysis is completed.
The deformation pattern for the associated plate is shown in Fig. 11 (a). The change of
curvature at r = X requires that the radial moment at that point becomes equal to zero.
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The only way we can achieve this and also satisfy the requirement of a minimum section
is to let the moments in regions 2 and 3 operate in regimes Be and AB respectively, so
that the regions 1 and 4 are now connected via two regions (2 and 3) with a constant
section. Deformation of the associated plate in regions 2 and 3 takes place by virtue of
the variable d¢jdMp discussed in Section 4.

The curvature path corresponding to the deformation pattern of Fig. 11(a) and the
stress regions discussed above is shown in Fig. 11(b).

To obtain the optimal design, we proceed as before and obtain

for region 1,

for region 2, M p = Y

for region 3, M p = Y

and for region 4,

~ = 2(R-p)p

X

M = ~(p3 _r2 )' _ Yp = -M
r 6 r r p

4Y ( p) p2
- l+log- +1-- = 0
PX

2
X X

2

( 6Y)t
~ = X 1--

PX
2

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

Figure 12 shows the results for this example. The common points of the regions are
shown in continuous lines. The dashed line gives the cost <I> of the built-in plate. This cost
<I> is the cost over and above the cost of a plate with the minimum specified cross section.

SUGGESTIONS FOR FURTHER WORK

1. Optimal design is still in its infancy and, as far as the author is aware, no attempt has
yet been made to check the validity of the theoretical results by experiment.

2. Though it is realized that the specific cost function is largely dependent on a par­
ticular application, some compilation of typical specific cost functions for particular cases
may stimulate the application of the method to practical cases.

3. It would be interesting to see ifthe present methods could be extended to the optimal
design of symmetrically loaded shells of revolution.

CONCLUSIONS

The method of optimal plastic design by means of an associated structure has been
developed for symmetrically loaded circular plates which obey the Tresca yield criterion.
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A design study was then made of the built-in plate subjected to uniform loading. The
design study included the case where a minimum plastic resistance was specified in the
specific cost function.
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Resume--La methode de plan optimal plastique par une structure associee elastique non lineaire est employee
afin de trouver Ie prix minimum d'epaisseur de plaques circulaires ayant des conditions rotationnellement
symmetriques de chargement et de support. Une etude est faite de la plaque encastree et un exemple est donne
oil une epaisseur minimum de la plaque est specifiee.

Zusammenfassung-Die Methode des optimalen plastischen Entwurfes mittels einer assoziierten nichtlinearen
elastischen Struktur wird angewandt urn die minimalen Dickenkosten fiir Rundplatten mit drehungssymme­
trischen Bedingungen fiir Belastung und Stiitzung zu ermitteln. Die eingebaute Platte wird griindlich untersucht
und ein Beispiel wird gegeben wobei die Mindestdicke der Platte gegeben ist.

A6cTpaKT-TIp1IMeHlIeTcll MeTO)J. HallJIy'illlerO nJIaCTII'ieCKOrO rrpoeKTa npll CBR3aHHOH HeJIHHeHHoil:

3JIaCTII'ieCKOH CTpyKType, 'iTo6hI Hail:TH CTOIIMOCTh MIIHIIMaJIhHOH TO)J.LUHHhI I.\IIPKYJIlIPHhIX llJIaCTHH co

BpaLUaTeJIbHO CIIMMeTpll'iecKHMH YCJIOBHlIMII Harpy3KH II OrrophI. TIpOH3Be)J.eHO H3¥'ieHHe BMOHTHpoBaHHoil:

nJIaCTIIHbI H )J.aeTclI nplIMep, r)J.e TO'iHO YCTaHOBJIeHa MHHIIMaJIbHali TOJILUHlla nJIaCTIIHbI.


